48. Особенность расчета на выносливость косозубых передач по сравнению с прямозубыми.

Контактные напряжения:

Допускаемые напряжения [σ]H1 для шестерни и [σ]H2 колеса определяют по общей зависимости, учитывая влияние на контактную прочность долговечность (ресурс), шероховатость и окружную скорость:

,

ZN – коэффициент долговечности .

ZR – коэффициент влияния шероховатости

ZV – коэффициент окружной скорости

Допускаемые напряжения для конических передач берутся следующим образом:

, где  - минимальное значение допускаемого напряжения из 2х возможных (шестерни и колеса).

 Изгибающие напряжения:

Допускаемые напряжения [σ]F1 для шестерни и [σ]F2 колеса определяют по общей зависимости, учитывая влияние на сопротивление усталости при изгибе, долговечности, шероховатости поверхности и реверсивности нагружения:

,

YN – коэффициент долговечности ., 4*10^6 – базовое число циклов, m=9

YR – коэффициент влияния шероховатости

YA – коэффициент двухсторонности приложения нагрузки (при реверсивном движении он уменьшается)

YZ – коэффициент, учитывающий способ получения заготовки колеса.

Допускаемые напряжения берутся меньшие из допускаемых напряжений шестерни и колеса.

 

49. Определение допускаемых контактных напряжений для расчета зубчатых цилиндрических и конических передач, от каких параметров они зависят. Каким образом при их расчете учитывают переменный режим и срок работы.

Контактные напряжения:

Допускаемые напряжения [σ]H1 для шестерни и [σ]H2 колеса определяют по общей зависимости, учитывая влияние на контактную прочность долговечность (ресурс), шероховатость и окружную скорость:

,

ZN – коэффициент долговечности .

ZR – коэффициент влияния шероховатости

ZV – коэффициент окружной скорости

Допускаемые напряжения для конических передач берутся следующим образом:

, где  - минимальное значение допускаемого напряжения из 2х возможных (шестерни и колеса).

Для цилиндрических колес берется наименьшее из допускаемых напряжений.

Число циклов нагружения за весь срок службы , где n – частота вращения об/мин, nc – число зацеплений шестерни и колеса за один оборот, Lh – время работы передачи. Если передача реверсивная, то берут не Nk, а эквивалентное NHE

Где коэффициент берется из таблицы в зависимости от режима нагружения.

 

50. Способы смазывания зубчатых передач. Типы смазочных материалов и их объемы.

По физическому состоянию смазочные материалы разделяют на жидкие (смазочные масла), пластичные, твердые и газооб­разные (масляный туман, очищенный воздух).

Смазочные масла являются основным смазочным материа­лом для машин. В зависимости от исходного продукта разли­чают нефтяные (минеральные), синтетические и жировые масла. В условиях жидкостного трения основной характерис­тикой смазочного масла является вязкость, которая характе­ризуется внутренним трением между слоями жидкости под действием сдвигающей силы. Различают динамическую и ки­нематическую вязкость. Динамическую вязкость μ, Па • с, ис­пользуют в расчетах, а кинематическую V, м2/с, — при произ­водстве масел. В литературе обычно приводят значение кине­матической вязкости масла при 40 °С (V40), при 50 °С (V50), при 100 °С (V100). Связь вязкостей масла: μ = ρυ, где ρ — плотность смазочного масла (820+960 кг/м3).

Смазочные масла обеспечивают снижение трения и изна­шивания, а также температуры трущихся поверхностей путем усиленного теплоотвода. Различают группы масел: моторные, индустриальные, трансмиссионные, специализированные, гидравлические. Моторные масла предназначены для смазы­вания двигателей внутреннего сгорания. Трансмиссионные масла используют для смазывания агрегатов трансмиссий раз­личной техники, включая механические передачи. Индустри­альные масла применяют для смазывания промышленного оборудования и технологических машин. Названия специали­зированных масел свидетельствуют об их особом назначении (энергетические, авиационные и др. масла). Гидравлические масла применяют в качестве рабочих жидкостей в гидросис­темах.

Пластичные смазочные материалы (ПСМ) состоят из жид­кой основы (смазочное масло) и загустителя (обычно мыла жирных кислот). Загуститель образует жесткий полимерный каркас, в ячейках которого удерживается жидкое масло. При небольших нагрузках ПСМ ведет себя как твердое тело — не растекается, удерживается на наклонных и даже вертикаль­ных плоскостях. Наиболее распространенными ПСМ являют­ся солидол жировой, литол-24, ЦИАТИМ-201.

Твердые смазочные материалы (ТСМ) обеспечивают сма­зывание трущихся поверхностей при трении в экстремальных условиях (низкие или высокие температуры, вакуум), когда применение других смазывающих материалов невозможно. В качестве ТСМ используют коллоидальный графит, дисуль­фид молибдена.

Способы смазки: отдушины в корпусах редукторов, в закрытых передачах используют масляный туман, «капельница» с маслом над зацеплением передачи, ну и сами что-нибудь придумайте.

 

Hosted by uCoz